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Using some natural conditions less restrictive than the GLqua(mln ) invariance, 
we present two possible multiparametric differential calculi on the quantum 
superplane. We show that there exists a new differential calculus which is different 
from the known one, generalizing the Wess-Zumino formalism to the superspace 
case. We discuss some *-algebra structures leaving invariant this differential 
calculus. The (1 + l)-dimensional case is analyzed and a realization of the super- 
Virasoro algebra on this particular quantum superspace is given. 

1. ~ T R O D U C T I O N  

The theory of quantum groups (Drinfel'd, 1985, 1986; Kulish and 
Reshetikhin, 1983; Jimbo, 1985, 1986; Corrigan et  al., 1990; Sudberg, 1990) 
has emerged in the last few years as a nontrivial generalization of the notion 
of Lie groups. The latter are recovered in the limit q ~ 1, where q is a 
continuous deformation parameter (or a set of parameters). The quantum 
groups were realized on the quantum hyperplane, in which coordinates are 
noncommuting (Manin, 1989; Takhtajan, 1989; Doebner and Henning, 1989). 
Woronowicz (1989) showed that these structures provide a concrete example 
of noncommutati~,e differential geometry. Wess and Zumino (1990) developed 
a simpler example of noncommutative geometry. They proved that one can 
introduce a consistent, GLq-covariant differential calculus on the noncommu- 
tative space of the quantum hyperplane. This scheme was generalized to the 
multiparametric case (Schirrmacher, 1991; S oni, 199 l a) and also extended 
to the quantum superplane (Soni, 1991b,c; Kobayashi and Uematsu, 1992). 

Brzezinski et al. (1992) gave another generalization of the work of 
Wess and Zumino, based on the covariance constraint; they assumed that the 
differential calculus is invariant only under the scale transformations instead 
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of with respect to the entire GLq quantum group. Under a such condition 
they showed that there exist two families of possible and nonequivalent 
multiparametric differential calculi. One of them coincides with the differen- 
tial calculus in Schirrmacher (1991) and Soni (1991a). 

In the present work we generalize the construction given in Brzezinski 
et  al. (1992) to the superplane case. Based on similar assumptions applied 
to the superplane, we show that there exist two families of possible and 
nonequivalent differential schemes. The first one (I) has more deformation 
parameters (qts,Pi, s), while the second one (II) has only (qu, s) as deformation 
parameters. These two families intersect for s = pi = 1 and also when we 
eliminate the bosonic part in both cases. Noting that case II coincides with 
that given in Soni (1991c), we are interested in this paper in examining 
explicitly the first one. By considering some conditions on the deformation 
parameters we will discuss the existence of some possible involutions leaving 
this new differential structure invariant on the quantum superplane. Then we 
study the (1 + l)-dimensional case, which leads to a realization of the 
deformed super-Virasoro algebra. 

This paper is organized as follows: In the Section 2 we give the possible 
multiparametric differential calculi on the quantum superplane. Section 3 is 
devoted to the examination of the different antilinear antiinvolutions. The 
last section treats the realization of the deformed super-Virasoro algebra. 

2. POSSIBLE MULTIPARAMETRIC D I F F E R E N T I A L  C A L C U L I  
ON THE QUANTUM SUPERPLANE 

In this section we introduce the differential calculus on the quantum 
superplane which obeys the following conditions: 

(i) The linear differential operator d is nilpotent. 
(ii) d satisfies the graded Leibniz rule. 
(iii) The differential calculus is invariant under the transformations 

xi --> c~i~, i =  1 . . . . .  m 

0 ~--->T~013, cx,[3 = m + 1 . . . . .  m + n 

where the elements ~ and 0 = denote the bosonic and fermionic, respectively 
(Grassmannian) generators of the (m + n)-dimensional quantum superplane. 

The last condition is less restrictive than the invariance under 
GLq~s.s(m/n ) required in Soni (1991b,c) and Kobayashi and Uematsu (1992). 
Its interpretation in the language of partial derivatives, which was given in 
Brzezinski et al. (1992) for the quantum plane, remains valid for the present 
case of the superplane. Indeed, let us call the i bosonic partial derivatives 
and the et fermionic partial derivative of the function f ( . . . )  ---- f ( x  I . . . . .  x% 
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0 m+l . . . .  , 0m+n), respectively, the functions O.,f(x I . . . . .  x m, 0 m+~ . . . . .  0 re+n) 
and O, , f ( x  m . . . . .  x m, 0 "+l . . . . .  0 re+n) such that 

m+n 
d f ( . . . )  = d x  ~ Oi f ( . . . )  + ~ dO ~ O, , f ( . . . )  

i= I ot=m + 1 

The condition (iii) means that if the function f has the form 

f ( x  I . . . . .  x m, 0 m§ . . . . .  0 "§  = (x i )mg(x  I . . . . .  ~ . . . . .  x " ,  0 m§ . . . . .  0 "*§ 

then 

(oi)m+lf : 0 

The differential calculus (Wess and Zumino, 1990) is defined in terms 
of matrices B and C [B, C ~ End(C m+" | C"+")] satisfying 

x l x  s --  ( - -  1)DBt~LxKx L = 0 (la) 

x l d x  s - ( -  I )iO+ I)C~LdXKXL = 0 (lb) 

where L J = 1 . . . . .  m + n, and the supernumerary generators x t denote the 
compact form of the pair (x i, 0 r of bosonic and fermionic coordinates such 
t h a t l  = 0 f o r l  = 1 . . . . .  m a n d ] =  1 f o r l = m  + 1 . . . . .  m + n. Note 
that any power in term of i is mod 2. 

In the language of matrices B and C, associativity and consistency with 
conditions (i)-(iii) require that B and C are subject of the following 
constraints: 

B23BI3BI2 = BI2BI3B23 (2a) 

~-'23Ci3(~12 = (~12Ci3(~23 (2b) 

(~IK~J LI IJ K L [([. KL -- ( - - l )  BKL)(~C~IV + (--1) CMN ) = 0 (2c) 

/~23Ci3C12 = CI2C13B23 (2d)  

where /~L  -- (--I)I2B~L (analogously for C), C~L = ( - l )3+g(  - l ) i J C ~ b  and 
the subscripts 1, 2, and 3 refer to different couples of indices; thus the repeated 
ones mean the usual matrix multiplication. In an appropriate basis, the general- 
ization to the case of  the quantum superplane from Manin's plane leads to 
the fact that the matrix B should be such that 

x t x  J - ( -  l )i) q t ~ t x t  = 0 (3) 

or again (in the above convention) 

x i x  j = qi jxJ~,  ~ 0  a = qi,,O~'x ~, 0'~013 = -q,~l~0130 r (06) 2 = 0 

where the q's are arbitrary complex parameters. 



2520 El Hassouni, Hassouni, and Tahri 

The most general matrix B satisfying (2a) and (3) has the form 

[ [ < j  S [ > j  

+ ( 1 - ~ )  ~(-l)13e~| (4) 

where dg E Mat(C "+") are matrices with single nonzero element (equal to 
l) a t ( L J ) a n d s  ~ C. 

The question of finding possible differential calculi on the quantum 
superplane is equivalent to searching for a matrix C satisfying equations 
(2b)-(2d) consistent with conditions (i)-(iii). To this end, let us recall that 
in the case of the quantum plane, this search led to two possible distinct 
forms of C (Brzezinski et aL, 1992). To summarize, the matrices B and all 
possible C's were given explicitly as follows: 

B= ~i e ~ e ~ +  ~i<j qqs ei~ @e~+ ~i>jqoej i~e~+ (1 _ l )  j~<jei@e~ I (5) 

CI = X pie~ @ ei + X qoe~ @ e~ (6a) 
i iq=j 

Cn = sB (6b) 

The generalization of this scheme to the quantum superplane gives, in 
connection with the matrix B of equation (4), two different and distinct forms 
of the matrix C: 

CI = ~ (pOl+'e~ @ eft + ~, que~ | el + ~, (s)13qtsetj @ el 
I I<J  I>J  

+ ~] (-1)i3[(s) iJ - l]e~ | eJ, Pt ~ C (7a) 
I<J  

Cn = sB (7b) 

These forms of C, that is, CI and Cu [equations (7a) and (7b)], are the 
supersymmetric versions of equations (6a) and (6b), respectively. Moreover, 
notice that if we eliminate the bosonic part from the quantum superplane (i.e., 
the quantum superplane contains only the fermionic coordinates), we obtain 

CI = Cn = ~ e~ | e~, + ~ sq~e~ | e~ + ~ q~f~e~ | e~ 
c~ a>f3 a<[~ 

- ( s -  1) ~ e,~| (8) 
a<13 
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We point out that the second form of C, equation (7b), coincides with the 
one given in Soni (1991c) and Kobayashi and Uematsu (1992), so we will 
be interested in what follows in the study of the new differential calculus 
corresponding to the matrix Ct, equation (7a). The explicit form of this 
differential calculus is then, for I < J, 

x-d.x: x tdx  t = (-1)l()+l)qu dxJxt  + ( - l ) i [ ( s )  73 - 1] d0dx J 

x J dx t = (-1)J(l+t)(s)13qj I dx t x ~ (9) 

x~daS = (p l ) l  +t d ~ x  ~ 

All other commutation relations which complete the scheme of this differential 
calculus can be deduced from the technique used by Wess and Zumino (1990). 
We list them as follows for I < J: 

dx-dx: dx t d J  = 0 for i = 0 (10) 

a-x: 

a-dx: 

dxt dxJ = (_  l)(l+l)0+ t) qu dxJdxt  
(s) 1J 

0~x J = ( -  1) ~ (s)~ x J al 
qu 

aAc t = ( -  l ) i Jq lg  0+ ( l l) 

atx t = 1 + (- l ) i (pl) l+lx I 01 + ( - 1 )  i ~] (-1)J[(s) iJ - 1]x s as 

a~ dx  s = ( - 1 )  ~(~+t) I dx  J a l  
qu 

aj dx t = ( -  1)JO+ t) qu - ~  dod bs (12) 

Ot d~  = dx t O, + ( -  1) I J>,~] ~ -~  - 1 Oj 

O-O: O~gt = 0 for i = 1 (13) 

q/J atO.t = ( -  1) ij ~ ~  aja, 

a-d: Old = ( - l ) ' d a ,  + ( - 1 ) ' ~ ]  ( ( s - ~ - j  1) dxS 0sat (14) 

Using all the above relations, it is easy to check that d 2 = 0, which is 
consistent with our assumption. 
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T I If we consider the quantum linear transformations ( J)(t.s= t ...... +.) on the 
variables and differentials, i.e., x / ~ T~x ~ and dx I ~ T~ dx J, the discussion 
of  the invariance o f  this differential structure under these transformations 
leads to consider two distinct possibilities. If  s = p; = 1, Vi = 1 . . . . .  m, 
this structure is equal to that given in Soni (1991c) with s = 1 and the set 
of  these transformations is just  the quantum supergroup GLqu.](m/n). Other- 
wise this structure is invariant, as we noticed above, under the action o f  the 
quantum sub-supergroup o f  GLqu.s(mln ) such that 

T ~ = T / , , = 0  i =  1 . . . . .  m; I X = m +  1 . . . . .  m + n  (15) 

T j = 0  for i - 7 s j  

3.  T H E  * - A L G E B R A  S T R U C T U R E  

Now let us discuss the construction of  some possible involutions leaving 
invariant the above new differential calculus on the quantum superplane 
described by the matrices B and Ci o f  equations (4) and (7a), respectively. 
We can distinguish three different possibilities. 

Case  1. The antilinear antiinvolution 

( x i )  * = X m + l - i  ~ X / ' ,  i '  = 1 . . . . .  m + 1 (16a) 

(0'~) * = 0 ~ + n + l - "  ----- 0 'v ,  IX' = 2 m  + n + 1 -  IX 

exists i f f  

s = 1, q~qiT" = 1, P*Pr = 1, q~r = 1, q*~q~,,~, = 1 

(16b) 

In compact  form, if  we take the permutation r such that 

(1 ...... m , m + l  ...... m + 7 )  
or: \ m  ...... l , m  + n ...... m +  

conditions (16b) become 

s = 1, q~q,r(t)o~J) = 1, P~'P,,(t) = 1 

The conjugates of  differentials and derivatives are expressed by 

(dxt) * = ( - 1 )  ~rO) d ~  (t), (Or)* = (--p~r(/))l-cr~/)O~r(/), 

(17) 

o.-i.o = i 
(18) 

Case  2. Another  antilinear antiinvolution given by 

(xi) * = x / ,  i =  1 . . . . .  m + 1 

(0~  * = 02m+n+l-~ ~ 0 ~ IX' = 2m + n + 1 -- IX 

(19a) 
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can be considered iff 

s = 1, qi~qij = 1, P * P i  = 1, 

In compact form, equalities (19b) become 

s = 1, q~'~q~tt)~t~ = 1, 

2523 

q~qia"  = 1, q*f~q, ,a,  = 1 

(19b) 

P~'P,tt) = 1 (20) 

where "r is a permutation acting only on the Grassmanian part and given by 

'r: (11 ...... m , m +  1 ...... m + 7 )  
. . . . . .  m , m  + n . . . . . .  m +  

The conjugates of differentials and derivatives are 

(dxt) * = (-l)T(t)dx ~c~, (0t)* = (--p-~t))t-~(hOT(O (21) 

C a s e  3. A last possible antilinear antiinvolution is described by 

(x/) * = x", (0~) * = 0 ~ (22) 

It exists if the following constraints on the deformation parameters hold: 

s * s  = 1, q ~ q u  = 1, P~ 'P t  = 1 

This involution acts on differentials and derivatives as 

(dx/)*  : ( -  1) 1 dx/,  (Oi)* = ( - -pt ) l - l (Sl -n-rn) lOi  

We notice that, by a direct computation, one can show that the differential 
calculus described by equations (7a) remains invariant under these 
*-operations. 

These involutions, especially the first case, will make it possible to 
introduce creation and annihilation superoperators and to construct the corres- 
ponding superalge'bra. Details of this idea will be given in a further work. 

4. T H E  (1 + 1 ) -DIMENSIONAL CASE AND A R E A L I Z A T I O N  O F  
T H E  S U P E R - V I R A S O R O  A L G E B R A  

This section is devoted to the study of the simpler example of  the (1 + 
1) quantum superplane. This particular case allows us to realize the deformed 
super-Virasoro algebra. Let us first set the commutation relations which 
interfere in the realization of this super-Virasoro algebra on the (1 + 1) 
quantum superplane. They are obtained immediately from the formulas of 
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the previous section; thus the variables x and 0 and their respective partial 
derivatives satisfy 

xO = qOx, 0 2 = 0 

0~0 = q-IO O~ 

O~c = 1 + p x  Ox (23) 

000 = 1 - 0 00 

OxOO = q 0oOx, 002 = 0 

Using this differential structure, one can get a deformation of the classical 
super-Virasoro algebra realized on the classical (1 + 1) superplane as follows: 

L. = - x  ~+t 0~, G. = x~+~0 O~, K. = x"0 00 (24) 

where Ln, G,,, and Kn (n E Z) are the generators satisfying 

[Lm, L.] = ( m  - n)Lm+n, [Kin, G.] = Gm+n 

[Lm, K.] = - n K m + . ,  [Kin, K.] = 0 (25) 

[Lm, G.] = ( m  - n)Gm+,,, {Gin, G . }  = 0 

Returning to the quantum case. one can verify, owing to equations (23), 
the following equalities: 

0~: ~ _ 1 - p_____~ x~_ ~ + p~x~ O~ 
l - p  

Oox ~ = q~x ~ 00 (26) 

x~0 = q~0 x ~ 

The deformed super-Virasoro algebra is realized by 

L~ = - ~  x ~+~ a~, Gn = x~+tO a~, K~ = x~O ao (n --> - 1 )  

(27) 

A direct computation leads to the commutation relations 

[L.,, Ln](p(m-n)12 p(n-m~ ) : [m - n]pWZLm+ n 

[Lm, K.]~p- ,~,p~)  = - [n]pla Kin+ n 

[Lm, Gn](q-ml2p(m-n)12,qml2p(n-m) 12) = q-ml2[m - n]pll2Gm+n 

[Km, Kn] = O, {Gin, Gn} = 0 

[ K m, G.] = Gin+ n 

(28 )  
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where 

~x _ ot-x 
[x]~ ~ - e t - l  and [A, B](~l.~2 ) ~-- amAB - o t 2 B A  

5. C O N C L U S I O N  

In this paper we discussed the possible differential calculi on the quantum 
superplane. Using a natural assumption that is less restrictive than the known 
covariance under GLqtj,s(m/n ), we showed the existence of a new differential 
calculus on the quantum superplane. This new scheme allows us to realize 
a deformed super-Virasoro algebra. The latter can be seen as a supersymmetric 
version of the deformed Virasoro algebra constructed (El Hassouni et al., 
1995) on the quantum plane. We also discussed some interesting involutions 
leaving this differential calculus invariant; some of them (case 2) will be 
interesting in the study of  a deformed superspace when its bosonic coordinates 
are real but its fermionic ones are complex. 
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